Межотраслевой баланс
Модель межотраслевого баланса:X = AX + Y
где A – матрица коэффициентов прямых материальных затрат; Y – уровень спроса на конечную продукцию, равновесный выпуск отраслей
X = B•Y
.
С помощью сервиса в онлайн режиме можно:
- найти коэффициенты полных материальных затрат, определить вектор валовой продукции;
- составить межотраслевой баланс, составить схему межотраслевого баланса труда;
- проверить продуктивность матрицы.
Межотраслевой баланс отражает производство и распределение валового национального продукта в отраслевом разрезе, межотраслевые производственные связи, использование материальных и трудовых ресурсов, создание и распределение национального дохода.
Система уравнений X = AX + Y
называется экономико-математической моделью межотраслевого баланса (МОБ) или моделью «затраты - выпуск». C помощью нее можно выполнить следующие расчеты:
- подставив в модель объемы валовой продукции каждой отрасли Xi, можно определить объем конечной продукции отрасли Yj:
Y = (E - A)X
- задав величины конечной продукции всех отраслей Yj, можно определить величины валовой продукции каждой отрасли Xi:
X = (E - A)-1Y
- установив для ряда отраслей величины валовой продукции, а для всех остальных отраслей задав объемы конечной продукции, можно найти объемы конечной продукции первых отраслей и объемы валовой продукции вторых.
Здесь A – матрица прямых затрат, коэффициенты которой, aij показывают затраты i-й отрасли на производство единицы продукции j-й отрасли. Введем обозначение B = (E - A)-1. Матрица B называется матрицей полных материальных затрат, коэффициенты которой, bij показывают полный объем продукции i-й отрасли, используемой для производства единицы продукции j-й отрасли. С учетом линейности соотношений эффект распространения спроса ΔX, вызванный изменением конечного спроса на величину ΔY рассчитывается как: ΔX = B·ΔY
Через C=A-B обозначают матрицу косвенных затрат.
Пример №1. Для трехотраслевой экономической системы заданы матрица коэффициентов прямых материальных затрат A и вектор конечной продукции Y.
Пример №2. Дан межотраслевой баланс трехотраслевой модели хозяйства:
№ отрасли потребления | 1 | 2 | 3 | Конечный продукт | Валовый продукт | Y′ | |
№ отрасли | 1 | 20 | 20 | 60 | 100 | 200 | 150 |
отрасли | 2 | 20 | 40 | 60 | 80 | 200 | 100 |
производства | 3 | 20 | 0 | 10 | 70 | 100 | 100 |
Определить:
1) технологическую матрицу;
2) матрицу коэффициентов полных затрат;
3) дать экономический анализ каждого столбца матрицы коэффициентов полных затрат;
4) определить валовый выпуск X’ на новый ассортимент конечной продукции Y’;
Решение.
Находим валовой объем продукции xi;
x1 = 20 + 20 + 60 + 100 = 200
x2 = 20 + 40 + 60 + 80 = 200
x3 = 20 + 0 + 10 + 70 = 100
Отрасль | Потребление | Конечный продукт | Валовой выпуск | ||
Производство | 20 | 20 | 60 | 100 | 200 |
20 | 40 | 60 | 80 | 200 | |
20 | 0 | 10 | 70 | 100 |
По формуле aij = xij / xj находим коэффициенты прямых затрат:
a11 = 20/200 = 0.1; a12 = 20/200 = 0.1; a13 = 60/100 = 0.6; a21 = 20/200 = 0.1; a22 = 40/200 = 0.2; a23 = 60/100 = 0.6; a31 = 20/200 = 0.1; a32 = 0/200 = 0; a33 = 10/100 = 0.1;
0.1 | 0.1 | 0.6 |
0.1 | 0.2 | 0.6 |
0.1 | 0 | 0.1 |
Определим матрицу коэффициентов полных затрат с помощью формул обращения невырожденных матриц.
а) Находим матрицу (E-A):
(E-A) = |
|
б) Вычисляем обратную матрицу (E-A)-1:
|
Найдем величины валовой продукции трех отраслей
X' = (B-1*Y') = |
| * |
| = |
|
Пример №3. В модели межотраслевого баланса
Производство | Потребление | Конечная продукция | Валовая продукция | ||
1 | 2 | 3 | |||
1 | 10 | 5 | 15 | 70 | 100 |
2 | 20 | … | … | … | … |
3 | 30 | … | … | … | … |
Оплата труда | 30 | … | … | … | … |
Прибыль D | D | … | … | … | … |
прибыль D равна:
D = Валовая продукция – Затраты на производство – Оплата труда = 100 – (10+20+30) – 30 = 10.
Пример №4. Межотраслевой баланс затрат труда.
Производящие отрасли | Потребляющие отрасли | ||||
Межотраслевые затраты овеществленного труда | Затраты труда на конечную продукцию | Затраты труда в отраслях (трудовые ресурсы) | |||
1 | 2 | 3 | |||
1 | 348 | 76.316 | 436.526 | 299.158 | 1160 |
2 | 139.84 | 230 | 0 | 90.16 | 460 |
3 | 279.021 | 61.189 | 175 | 359.79 | 875 |