Пример построения мультипликативной модели

Задание. На основе данных, скорректированных на инфляцию, о прибыли компании за 12 кварталов (табл.) построить мультипликативной модель тренда и сезонности для прогнозирования прибыли компании на следующие два квартала. Дать общую характеристику точности модели и сделать выводы.

Решение проводим с помощью калькулятора Построение мультипликативной модели временного ряда.
Общий вид мультипликативной модели следующий:
Y = T x S x E
Эта модель предполагает, что каждый уровень временного ряда может быть представлен как сумма трендовой (T), сезонной (S) и случайной (E) компонент.
Рассчитаем компоненты мультипликативной модели временного ряда.
Шаг 1. Проведем выравнивание исходных уровней ряда методом скользящей средней. Для этого:
1.1. Найдем скользящие средние (гр. 3 таблицы). Полученные таким образом выровненные значения уже не содержат сезонной компоненты.
1.2. Приведем эти значения в соответствие с фактическими моментами времени, для чего найдем средние значения из двух последовательных скользящих средних – центрированные скользящие средние (гр. 4 табл.).

t yt Скользящая средняя Центрированная скользящая средняя Оценка сезонной компоненты
1 375 - - -
2 371 657.5 - -
3 869 653 655.25 1.33
4 1015 678 665.5 1.53
5 357 708.75 693.38 0.51
6 471 710 709.38 0.66
7 992 718.25 714.13 1.39
8 1020 689.25 703.75 1.45
9 390 689.25 689.25 0.57
10 355 660.5 674.88 0.53
11 992 678.25 669.38 1.48
12 905 703 690.63 1.31
13 461 685 694 0.66
14 454 690.5 687.75 0.66
15 920 - - -
16 927 - - -

Шаг 2. Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 5 табл.). Эти оценки используются для расчета сезонной компоненты S. Для этого найдем средние за каждый период оценки сезонной компоненты Sj. Сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.

Показатели 1 2 3 4
1 - - 1.33 1.53
2 0.51 0.66 1.39 1.45
3 0.57 0.53 1.48 1.31
4 0.66 0.66 - -
Всего за период 1.74 1.85 4.2 4.28
Средняя оценка сезонной компоненты 0.58 0.62 1.4 1.43
Скорректированная сезонная компонента, Si 0.58 0.61 1.39 1.42

Для данной модели имеем:
0.582 + 0.617 + 1.399 + 1.428 = 4.026
Корректирующий коэффициент: k=4/4.026 = 0.994
Рассчитываем скорректированные значения сезонной компоненты Si и заносим полученные данные в таблицу.
Шаг 3. Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины T x E = Y/S (гр. 4 табл.), которые содержат только тенденцию и случайную компоненту.
Находим параметры уравнения методом наименьших квадратов.
Система уравнений МНК:
a0n + a1∑t = ∑y
a0∑t + a1∑t2 = ∑y•t
Для наших данных система уравнений имеет вид:
16a0 + 136a1 = 10872.41
136a0 + 1496a1 = 93531.1
Из первого уравнения выражаем а0 и подставим во второе уравнение
Получаем a0 = 3.28, a1 = 651.63
Среднее значения
overline{y} = {sum{}{}{}y_{i}}/{n} = {10872.41}/{16} = 679.53
t y t2 y2 t•y y(t) (y-ycp)2 (y-y(t))2
1 648.87 1 421026.09 648.87 654.92 940.05 36.61
2 605.46 4 366584.89 1210.93 658.2 5485.32 2780.93
3 625.12 9 390770.21 1875.35 661.48 2960.37 1322.21
4 715.21 16 511519.56 2860.82 664.76 1273.1 2544.83
5 617.72 25 381577.63 3088.6 668.04 3819.95 2532.22
6 768.66 36 590838.18 4611.96 671.32 7944.97 9474.64
7 713.6 49 509219.75 4995.17 674.6 1160.83 1520.44
8 718.73 64 516571.58 5749.83 677.88 1536.93 1668.26
9 674.82 81 455381.82 6073.38 681.17 22.14 40.28
10 579.35 100 335647.52 5793.51 684.45 10034.93 11045.26
11 713.6 121 509219.75 7849.56 687.73 1160.83 669.14
12 637.7 144 406656.13 7652.35 691.01 1749.71 2842.39
13 797.67 169 636280.07 10369.73 694.29 13958.53 10687.5
14 740.92 196 548957.15 10372.83 697.57 3768.85 1878.69
15 661.8 225 437983.3 9927.05 700.85 314.08 1524.97
16 653.2 256 426667.57 10451.17 704.14 693.14 2594.6
136 10872.41 1496 7444901.2 93531.1 10872.41 56823.71 53162.96


Шаг 4. Определим компоненту T данной модели. Для этого проведем аналитическое выравнивание ряда (T + E) с помощью линейного тренда. Результаты аналитического выравнивания следующие:
T = 651.634 + 3.281t
Подставляя в это уравнение значения t = 1,...,16, найдем уровни T для каждого момента времени (гр. 5 табл.).

t yt Si yt/Si T TxSi E = yt / (T x Si) (yt - T*S)2
1 375 0.58 648.87 654.92 378.5 0.99 12.23
2 371 0.61 605.46 658.2 403.31 0.92 1044.15
3 869 1.39 625.12 661.48 919.55 0.95 2555.16
4 1015 1.42 715.21 664.76 943.41 1.08 5125.42
5 357 0.58 617.72 668.04 386.08 0.92 845.78
6 471 0.61 768.66 671.32 411.36 1.14 3557.43
7 992 1.39 713.6 674.6 937.79 1.06 2938.24
8 1020 1.42 718.73 677.88 962.03 1.06 3359.96
9 390 0.58 674.82 681.17 393.67 0.99 13.45
10 355 0.61 579.35 684.45 419.4 0.85 4147.15
11 992 1.39 713.6 687.73 956.04 1.04 1293.1
12 905 1.42 637.7 691.01 980.66 0.92 5724.7
13 461 0.58 797.67 694.29 401.25 1.15 3569.68
14 454 0.61 740.92 697.57 427.44 1.06 705.39
15 920 1.39 661.8 700.85 974.29 0.94 2946.99
16 927 1.42 653.2 704.14 999.29 0.93 5225.65

Шаг 5. Найдем уровни ряда, умножив значения T на соответствующие значения сезонной компоненты (гр. 6 табл.).
Расчет ошибки в мультипликативной модели производится по формуле:
E = Y/(T * S) = 16
Для сравнения мультипликативной модели и других моделей временного ряда можно использовать сумму квадратов абсолютных ошибок:
Среднее значения
overline{y} = {sum{}{}{}y_{i}}/{n} = {10874}/{16} = 679.63
t y (y-ycp)2
1 375 92796.39
2 371 95249.39
3 869 35862.89
4 1015 112476.39
5 357 104086.89
6 471 43524.39
7 992 97578.14
8 1020 115855.14
9 390 83882.64
10 355 105381.39
11 992 97578.14
12 905 50793.89
13 461 47796.89
14 454 50906.64
15 920 57780.14
16 927 61194.39
136 10874 1252743.75


R^{2} = 1 - {43064.467}/{1252743.75} = 0.97
Следовательно, можно сказать, что мультипликативная модель объясняет 97% общей вариации уровней временного ряда.
Проверка адекватности модели данным наблюдения.
F = {R^{2}}/{1 - R^{2}}{(n - m -1)}/{m} = {0.97^{2}}/{1 - 0.97^{2}}{(16-1-1)}/{1} = 393.26
где m - количество факторов в уравнении тренда (m=1).
Fkp = 4.6
Поскольку F > Fkp, то уравнение статистически значимо
Шаг 6. Прогнозирование по мультипликативной модели. Прогнозное значение Ft уровня временного ряда в мультипликативной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда:T = 651.634 + 3.281t
Получим
T17 = 651.634 + 3.281*17 = 707.416
Значение сезонного компонента за соответствующий период равно: S1 = 0.578
Таким образом, F17 = T17 + S1 = 707.416 + 0.578 = 707.994
T18 = 651.634 + 3.281*18 = 710.698
Значение сезонного компонента за соответствующий период равно: S2 = 0.613
Таким образом, F18 = T18 + S2 = 710.698 + 0.613 = 711.311
T19 = 651.634 + 3.281*19 = 713.979
Значение сезонного компонента за соответствующий период равно: S3 = 1.39
Таким образом, F19 = T19 + S3 = 713.979 + 1.39 = 715.369
T20 = 651.634 + 3.281*20 = 717.26
Значение сезонного компонента за соответствующий период равно: S4 = 1.419
Таким образом, F20 = T20 + S4 = 717.26 + 1.419 = 718.68

Пример. На основе поквартальных данных построена мультипликативная модель временного ряда. Скорректированные значения сезонной компоненты за первые три квартала равны: 0,8 — I квартал, 1,2 — II квартал и 1,3 — III квартал. Определите значение сезонной компоненты за IV квартал.
Решение. Поскольку сезонные воздействия за период (4 квартала) взаимопогашаются, то имеем равенство: s1 + s2 + s3 + s4 = 4. Для наших данных: s4 = 4 - 0.8 - 1.2 - 1.3 = 0.7.
Ответ: Сезонная компонента за IV квартал равна 0.7.

загрузка...